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1. Introduction

"'The purpose of the Advanced Silicon compiler in Prolog project is to syn-

thesize high-quality VLSI layouts from high-level specifications. The ASP sys-

tem consists of two major components. The low-level part produces masks from

functional blocks containing logic equations. The high-level part generates the

input to the low-level part from instruction-set level specifications written in

Prolog.

This document describes the hiih-1ei~l part. Section one presents its gen-

eral organization. Section two describes its first stage, register allocation. Sec-

tion three describes its second stage, operation scheduling and finite state

machine construction. Section four defines the structural description mechan-

ism that is the interface between the high-level part and the low-level part.%

2. Overview

The low-level component of ASP generates a control path containing a

finite state machine and a data path containing registers and functional units.

Given this target, ASP's high-level synthesis component performs five

tasks. It maps the Prolog variables in input specifications into hardware
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registers. It maps Prolog operators into functional units. It maps Prolog con-

trol constructs into finite state machine transitions. It schedules operations

7 and register transfers. And it produces low-level structural descriptions that

embody these mappings and schedules. It performs these tasks in two stages.

The first stage maps Prolog variables into hardware registers. The result

of the stage is a specification equivalent in functionality to its input, but one

that stores values in a Prolog database tagged with register names. Values are

moved to Prolog variables for computation only, and are stored again in the

database after computation. The Prolog variables used in this way can be

thought of as the connections between registers and functional units.

The second stage performs all the other high-level tasks. It first constructs

a finite state machine, assigning each Prolog goal in its input specification to a

specific state, transforming each goal into a set of hardware operations, and

mapping each change in control flow into a state transition. It then uses the

FSM to generate a structural description, containing a control path and a data

path, which is passed to the low-level part of ASP.

The order in which the high-level tasks are performed is dictated by the

dependencies between tasks and by the degree to which the tasks change the

original input specification. Register mapping is done first because it perturbs

the high-level specification the least and because operation scheduling depends

on it. Operation scheduling is done next because state transition and op map-

ping depend on it; they are done next. Generation of the output structural

description is done last because it depends on all the previous tasks. The order
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of tasks corresponds to levels of abstraction. First the model of storage is

changed, then timing is introduced, and finally bindings between Prolog enti-

ties and hardware objects are made.

Both stages are divided into two phases. A task may be performed in one

or both phases. The first phase creates, from its input specification, a database

of analysis information (and checks that the specification is well-formed). The

second phase generates a new specification based on the analysis of the first

phase. The functionality of the new specification can be verified by using it in

simulation.1

The system is modular; the results of any phase (database or specification)

can be written out and used independently by the next phase. As a result the

system is easy to debug, because each phase is autonomous. This also means

that the user (and possibly future optimization tools) can improve the output of

any phase before it is sent to the next.

The system has synthesized small designs, including a simple nmicroproces-

sor. In general the next extensions to the system will make it more sophisti-

cated and robust. Specific improvements are discussed in following sections.

2.1. The Use of Prolog

ASP uses Prolog as its specification language. This has turned out well so

far, for four reasons. First, control in Prolog is simple (ignoring backtracking),

'The original input specification should be a directly executable Prolog program. The
register-based specification produced by the first stage is also directly executable. The structural
description generated by the second stage requires a simulator, which has not yet been construct-
ed.
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and maps easily into hardware. Second, clauses tend to be short and well

modularized, lending themselves to easy translation. Third, Prolog's single-

assignment rule makes analysis easier. Fourth, Prolog's simple structure and

syntax facilitate automatically generating Prolog specifications.

ASP also uses Prolog as its implementation language (as does the OCCAM

project), resulting in two benefits. First, Prolog's database properties have

aided the production and processing of analysis information. Second, Prolog's

rule-based environment has made heuristics easy to implement.

On the other hand, without a sophisticated debugger, Prolog, with its

failure and backtracking semantics, has been hard to debug. Similarly, Prolog

code is hard to modify without careful redesign.

2.2. Existing Systems

The full-range synthesis systems examined here all take high-level

specifications to silicon. Such complete systems are rare.

2.2.1. MacPitts

The foremost complete synthesis system is MacPitts ([MacPitts-Manuall,

[MacPitts-Intro]). MacPitts uses LISP as its language framework, but special

hardware-oriented functions (for defining both control 2 and data) are used for

specification. The unit of specification is the finite state machine. The Mac-

Pitts FSM implements a simple master-slave model of computation -- in any

2Control low is managed with the LISP cond function, semantically modified in one impor-
tant respect - once a branch is taken, the consequents in that branch are evaluated in parallel.

so

K--KL
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state register values are held while new values are computed, and then, on

state transition, the old values are replaced with new ones.

MacPitts maximizes parallelism, creating enough buses and functional

units to make each state maximally parallel, while avoiding duplication. On

the other hand, storage is managed explicitly by the user. The system makes

no attempt to optimize register usage.

One advantage of MacPitts is the simplicity of the specification mechan-

ism. Unlike a conventional programming language with a plethora of control

structures, MacPitts has essentially one. The FSM construct is powerful and

natural. There are also few data types.

Another advantage is its optimization of operator usage. It does not, how-

ever, try to identify or reduce critical paths; the user must optimize, but can

affect area and time factors only indirectly. 3 The system has produced several

designs, including a 6502.

2.2.2. CMU-DA

The CMU-DA system, in contrast to MacPitts, employs extensive optimiza-

tion techniques, with mixed success.

The CMU-DA specification language is ALGOL-derived ISPS, which is

quite complex compared to MacPitts. It has several control constructs, and

both explicit parallelism and explicit sequentiality. Instead of mapping a

specification more or less directly into hardware structure as MacPitts does, the

3See section 3.13 of the user's manual for advice to users in this regard.

.4&- _' Z %O
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CMU-DA system first translates the ISPS into a dataflow graph (called a Value

Trace, or VT), which serves as the basis of synthesis.

Various competing VT optimization and hardware binding strategies have

been studied. These strategies take two forms: algorithmic compiler techniques

'p.. ([CMU-DPI, [CMU-Facet], [CMU-BLTI), and rule-based expert systems ([CMU-

DAA83], [CMU-DAA85]).

The compiler techniques are primarily graph transformations that
i apparently give good local results but poor global ones. This is probably

because the transformations are based on graph structure pattern matching,

which is not global in nature. For example, one system ([CMU-DP]) can optim-

ize communication between a few hardware elements, but cannot produce a

good general bus structure. To improve global results it allows a human

. designer to specify an initial global bus skeleton. This system has produced

6502 and PDP8/E designs.

The rule-based DAA system deals with both local and global structure. It

first does global register and control allocation, then local dataflow-based opera-

tor and temporary allocation, then local improvement, and finally global

improvement. The system has produced 6502 and 370 designs.

The overall CMU-DA results are inconclusive. Development of the rule-

based system is continuing ([Ulysses], [BottomUp]).

a.

'a
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2.2.3. Other Systems

A few other systems have synthesized small designs. These systems are in

the shadow of the MacPitts and CMU-DA efforts.

The CADDY system ([CADDY-CHDLI, [CADDY-DAC]) follows the CMU-

DA algorithmic paradigm. Its specification language is Pascal-like, augmented

with FORK and JOIN (for specifying parallelism).4 Global electrical and timing

behavior can be specified. A specification in this language is transformed into a

dataflow graph, which is optimized 5 via variable lifetime analysis and operator

minimization, and from which circuits are synthesized.

A greatest-common-divisor implementation has been produced. Experience

with the system has shown that its register allocation results 'differ strongly'

from manual designs -- are apparently worse.

In contrast to CADDY, the OCCAM to CMOS effort ([OCCAM-CMOS]) is

rule-based. Its specification language is OCCAM, which supports parallel com-

municating processes and both explicit fine-grained parallelism and sequential-

ity. The system performs functional level design in three stages: variables are

assigned to registers, OCCAM control constructs are translated into hardware

structure (making operations concurrent where possible), and communication

between processes is implemented. Users interact with the system during this

process (to establish, for example, the width of registers). Detailed information

'It also has other primitives for controlling concurrent hardware processes. Hierarchical

modularity is supported by hardware procedures.
'Graph grammars are used to specify graph transformations.

:I.
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on the stages is not given in the literature. The result of this automated design

is another specification, expressed in the automaton-based DDL language. All

logical-physical binding is apparently done in producing the DDL specification.

The DDL specifications are optimized and then further transformed, through a

number of steps, down to masks.

This system provides a useful model in that it uses multiple well-defined

levels of abstraction. Its compilation step also correspond roughly to those in

ASP.

2.2.4. Human-Oriented Design Systems

Most current CAD systems are oriented toward human designers, helping

them manage the design process. Almost all current hardware description

languages and systems are oriented toward multi-level design and simulation.

Two examples are n.2 [n.21 and Cascade [Cascade). Virtually any group of any

size, governmental or industrial, has produced one of these systems.

The systems often have well-defined levels of abstraction, but are quite

complex, 6 with human designers generating and interconnecting all descrip-

tions.

The systems tend to consist of a set of loosely coupled specialized tools,

each of which can be applied to a common database. The complexity and loose

coupling of these systems makes synthesis using them difficult.

'The Cascade system uses six languages -- LASSO (system architecture), LASCAR (function-
al architecture), CASSANDRE (register transfer), POLO (logical gate), CASTOR (transistor
switch), and [NAG (electrical).
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2.3. General ObservationsII. Silicon compilation is more difficult than programming language compila-

tion for a number of reasons. There are more degrees of freedom in silicon com-

pilation -- the compilation process both compiles to and defines the target

2> machine. Several competing low level constraints -- area, time, and topology --

influence compilation. Concurrent use of machine resources must be optimized.

And there is an apparent need for high performance results -- users are not wil-

ling to pay a performance penalty for an automatically generated design.

The ASP system will address these issues by experimenting with the

nature and timing of binding decisions, by using low level information in high

level synthesis, by applying existing parallelization techniques, and by allow-

ing human guidance of the design.

Some systems are driven by a dataflow representation of the input

specification. The result is to bind operators and their connections first. This

produces maximal concurrency, but is potentially wasteful of resources (as

dataflow machines are) and damaging to a regular layout (because dataflow

graphs are otten irregular).

In contrast, the ASP system will preserve specification structure

throughout synthesis. This, it is believed, will make the synthesis process

easier to control. First, the user will be able to affect synthesis through the

form of the specification. The MacPitts system works this way. Untillautomated synthesis becomes much better understood, for high quality results

or the user will be relied on to some extent to guide synthesis. Good user interac-
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tion will be important. Second, regularity should be enhanced by using timing

and control to drive connectivity.

It is necessary to control the many degrees of freedom in synthesis. There

is in general a tradeoff between generality and performance. High performance

requires specialized expertise. This is reflected in good initial global choices,

which can usually be made only with knowledge of the problem domain. ASP

will concentrate on microprocessors.

3. Storage Allocation

The first stage of synthesis in ASP maps variables appearing in a

specification to physical storage elements. It takes a tail-recursive executable

instruction-set-level Prolog specification and produces an equivalent one that

uses globally available facts in a Prolog database rather than Prolog variables.

These global facts map directly into hardware registers. The stage operates in

two phases. The analysis phase associates storage elements with variables,

optimizing by sharing when possible. The transformation phase uses the

analysis information to generate a new fact-based specification.

3.1. The Analyzer

The analyzer assigns storage elements to all Prolog variables in a

specification. Different variables are made to share the same element under

two basic circumstances, argument passing and value assignment.

Some relationship must be established between a goal invocation and its

matching clause head so that values may be passed, The analyzer does this by



assigning the same storage element to variables in the same positions in invo-

cation and head. Thus in

and

g(X, Y)

A and X share one element, and B and Y share another. Assigning a value to

A (via its storage element) also assigns that value to X.

A special case of argument passing is tail recursion; different variables in

the same clause are assigned the same storage elements. The clause head vari-

ables (representing the values of the current loop iteration) share the storage of

the variables in the recursive invocation (representing the values of the next

iteration).7

Since Prolog is a single-assignment language, its variables are effectively

* write-once memory. To use hardware efficiently, the analyzer assigns different

variables in the same clause to the same storage element when possible. In

particular, the source and destination variables of an is operator can often be

assigned the same storage element, since the old source value is often not used

after the new destination value is computed. 8

The analyzer takes a goal as its input argument, and analyzes the (depth-

first) transitive closure of clauses reachable from that initial goal. It generates

.4)~?This sharing is correct only if the next iteration values are defined after all uses of the
current-iteration values. Live variable analysis can be used to verify this condition. Local reord-
ering can be done to produce this condition.

'As with tail-recursion, Live variable analysis is needed to assure the correctness of storage
element sharing.
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a database of variable information, each database entry corresponding to a

variable in a clause, and possessing an associated storage element and other

information used by the transformer.

3.2. The Transformer

The transformer produces new executable Prolog clauses from the ones

scanned by the analyzer, changing variable references into constructs using

storage elements that map readily into hardware. Five specific transformations

are performed: argument removal, expression value manipulation, implicit

transfer, dispatch setup, and memory lookup.

The first two transformations implement a load-store register-based model

of computation. Arguments are put in storage elements rather than variables,

and those storage elements are then accessed and set by expressions that need

or produce values. For example, the goal

... increment(PC, P),

and the clause

increment(In, Out) :- Out is In + 1.

become
9

... increment,

and' o

*This assumes that the transformer has already put the value associated with PC into
storageElementl when that value was defined, before the increment goal, and that the analyzer
has determined that P may be put in the same storage element as PC.

'Thn access and set goals are defined as
accesaX, Y) :- Z =.. IX, Y1. Z.

and
setfX, Y) abolish(X, 1). Z [X, Y1, assert'Z).

4.............% %~- K ~
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increment
access(storageElementl, In),
Out is In + 1,
set(storageElementl, Out).

Prolog variables must still be used for computation; they are not used for

storage.

The third transformation handles the unification of two variables assigned

to different storage elements. Consider

... jump(ADR, PC),...

and"1

jump(X, Y):- Y = X.

where ADR has been assigned to storageElementl and PC to storageElement2.

The jump clause becomes

jump :-
access(storageElementl, Temp),
set(storageElement2, Temp).

To generate this transfer code the transformer must know which variable is the

source and which is the destination -- which is bound and which is unbound

when the clause is entered. The analyzer provides this information.

The last two transformations deal with atomics in clause heads. The

analyzer notices these atomic arguments for the transformer.

One use of atomics is for control -- for clause selection. Consider

... execute(OP, AC, A), ...

1"rhe analyzer cannot assign the two appearances of X to the same storage element because
that could cause ADR and PC in turn to have the same storage element, which might not be
correct.

- z (



14

and

execute(add, In, Out):

execute(sub, In, Out)

The OP argument must be retained in the transformed version for Prolog con-

trol semantics to operate. The execute goal and clauses are transformed to

... access(storageElementl, OP), execute(OP),

and
1 2

execute(add) ...

execute(sub)

This control structure can be realized in hardware with next-state selection

logic.

Another use of atomics is for modelling memory, where clauses are facts,

returning values. For example, a jump instruction at location 1000 that jumps

to location 2000 can be represented as

memory(1 000, jump, 2000).

so that, when PC is bound to 1000,

... memory(PC, OP, ADR),...

retrieves the jump operator and the operand 2000. Such a memory reference is

transformed into

... access(storageElementl, PC),
memory(PC, OP, ADR),
set(storageElement2, OP),
set(storageElement3, ADR),

This accessing and setting of storage elements parallels the loading and storing

'"2 he access goal in this case actually has the name lookup, to distinguish it from a standard

access. It is equivalent to access, but this different name makes the job of the analyzer in the
second synthesis stage a bit easier.

Z- pid -



15

of address and data registers in hardware. The transformer uses the analyzer's

source-destination information to determine, for a particular argument,

* whether to generate an access or a set.

3.3. Assumptions

Some assumptions are made about the specifications given to the storage

mapping stage.

First, they are assumed to be correct. The stage makes no attempt to

detect semantic specification errors.

Second, they are assumed to be determinate. Backtracking has no ready

hardware analog.

Third, clause heads and goals are assumed to be consistent, in terms of

variable-atomic and source-desti nation information. Inconsistencies can in

some cases be resolved.'

Fourth, all unbound variables are assumed to be instantiated in the first

goal in which they appear. This is used in generating source-destination infor-.

mation.

3.4. Improvements

Various modifications and extensions can be made.

First, variable lifetime analysis can be added to the analysis phase. This

will allow safe register reuse and goal reordering.

13 An atomuic takes precedence over a variable. Different versions of clauses can be created to
deal with inconsistent goal uses -- each goal effectively makes a different clause.

49 11~.'~.; %~ ' . .~ - ..
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Second, the stage can be made to support library modules that can be used

by a specification but that have a register model of storage.

Third, the system can be made to support user interaction, both passive

database queries and active register reassignment. Consistency guarantees

will have to be supported.

Fourth, more complex specifications may uncover uses of Prolog that will

require other transformations.

Fifth, the use of non-argument variables may have to be treated with more

sophistication. Complex expressions may produce temporary values that must

ZI be stored.

4. Operation Schedul~ing and FSM Construction

The second stage of synthesis in ASP takes a register-based executable

Prolog specification and produces the input to the low-level part of ASP, a

structural description containing a finite state machine and a data path. The

analysis phase of the stage assigns Prolog goals to hardware operations and

FSM states, and generates FSM state transition information. The transforma-

tion stage binds hardware operations and operands to physical functional units,

and uses the FSM information generated in the first phase to create a struc-

tural description.

4.1. The Analyzer

* The analyzer scans the input specification, converting each goal into an

abstract hardware operation associated with an FSM state.
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Each hardware operation is stored in the analysis database and has the

form

op( <source>, <connection>, <destination>, <state>).

y For example, the input specification goals

N.' ... access(regAC, Temp),
set(regPC, Temp), ...

would set the program counter to the contents of the accumulator. These two

goals become the operation

op(regAC, Temp, regPC, state!).

In a more complicated example, the goals

access(regAC, Tempi),
access(memDR, Temp2),
Temp3 is Tempi + Temp2,
set(regAC, Temp3), ...

would add the contents of the accumulator and the memory data register and

store the result back in the accumulator. These goals become

op(regAC, Tempi, +, stateJ).
op(memDR, Temp2, +, stateJ).
op(+, Temp3, regAC, stateJ).

These are abstract operations -- no actual hardware elements are allocated.

The Temps and + have not been bound to actual buses or an ALU. Note the

assumption that, in a single state, a register can be read, an addition per-

formed, and that same register written.

As the analyzer processes goals it also accumulates state transition infor-

mation. It only records transitions that alter normal linear control flow. These

transitions can be conditional or unconditional.

' "J

4.e
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Consider the execute example in the previous section. It consists of a case

dispatch to a collection of instruction-specific goals. The dispatch is a condi-

tional transition; the return from a case arm is an unconditional one.

Unconditional transfers are stored as

transfer(<from-state>, uncond, <to-state>).

Conditional transfers have the form

transfer(<from-state>, cond, <test>).

where <test> is the source of the value that will drive the dispatch. Each arm

is stored as

case(<from-state>, <value>, <to-state>).

For example, the execute dispatch example is represented as

transfer(stateK, cond, regOP).

and

case(stateK, add, stateL).
case(stateK, sub, stateM).

and the end of the case arms appear as

transferstateL, uncond, stateZ).
transfer(stateM, uncond, stateZ).

From these database entries the FSM of the next section can be constructed.

The analysis database is a complete representation of the specification. It

could serve as input to a simulator that evaluated op, transfer and case entries.

V
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4.2. The Transformer

The transformer allocates functional units and buses to the abstract opera-

tions created by the analyzer, and generates a data path and FSM structural

description. Specific information about functional units, timing, and bus struc-

ture is concentrated in the transformer.

The transformer makes two passes over the hardware operation informa-

tion.

The first pass binds abstract operations to functional units. For example,

it maps arithmetic operations to ALU's with the appropriate functionality. It

also maps abstract connections to buses. Both these processes are simple in the

current system, but can easily be much more sophisticated. At the end of the

first pass the element, control, and bus declarations, described in the next sec-

tion, are produced.

The second pass generates state definitions. Abstract operations are

translated into functional unit control signals and, for each state, packaged

with next state information.

4.3. Improvements

Four classes of improvements can be made to the second stage. They all

increase its sophistication.

The first class involves enhancing the analyzer, with the goal of increasing

the concurrency in the final design. The system currently allows only one store

per state. The first enhancement is the addition of dependency analysis, deter-
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mining which hardware operations depend on the results of others. This

analysis establishes basic constraints on what can be performed in parallel. 1'

The second enhancement is the use of the dependency analysis to schedule

parallel operations.15 Different scheduling algorithms will be investigated (see

[HALL, [Sehwal, [MAHA], and [Mimolal).

The second class consists of broadening the data path architectures sup-

ported by the system. The current system assumes a simple bus structure, with

two source buses and a result bus, and a MacPitts-like master-slave style. To

"A basic block in a Prolog specification is a sequence of code uninterrupted by conditional
execution or tail recursion. Conditional constructs are clause invocation (only where one clause
among several may be selected), if-then-else, and disjunction.

Since Prolog is a single-assignment language, the only dependencies that
occur in a basic block are data dependencies. There are three types of opera-
tions: register load and store; targeted computation, where a destination regis-
ter is specified; and untargeted computations, usually comparisions appearing
as the first goals in a clause and used for clause selection. All three can intro-
duce dependencies.

The analyzer currently locates control structures, divides the specification
accordingly, and relates sequences to their enabling conditions. Disjunction
and if-then-else are not handled initially.

The analyzer will get timing estimates for all operations (from the library
or the user) and associate timing constraints with each basic block.

'sData dependencies, connectivity restrictions, and area limitations together set a lower
bound on speed and concurrency. Numeric bounds will be set on all three characteristics -- the
maximum number of clock phases, the maximum number of buses, and the maximum data path
area. One bound will be optimized with respect to the other two. Hard and soft bounds may be
set - a soft bound can be exceeded when synthesis would otherwise fail. A greedy technique
could be used for all improvements, based on As Early As Possible scheduling ([CMU-Facet]).

Basic blocks will be taken initially as fixed boundaries; operations will not
be moved from one block to another.

Buses will be shared as much as possible, within dependency constraints.

Computational unit sharing is similar to bus sharing. Area and connec-
tivity constraints limit the availability of computational units. Optimization
may require functional change. For example, a register may become a counter
if it must be incremented during a phase when no ALU is available.

-p - *,
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support concurrency (pipelining in particular), the system will have to syn-

thesize more complex architectures, with more sophisticated bus and timing

models.

The third class consists of increasing the number and complexity of the

functional units known to the stage. The stage needs a range of functional

units to choose from, in order to select the one that best meets the require-

.2 ments of a given set of abstract hardware operations. Area, time, and topology

are important as well as functionality. And more complex functional units are

needed to support more complex architectures.

The fourth class involves making control of the stage more sophisticated,

in particular the control of architecture and functional unit selection and con-

currency optimization. Control can be extended both by heuristics and by

human interaction with the synthesis process (see [ADAM], [Ulysses), and

[Expert]). In addition, failure and backtracking may be employed, but the

potential design space is so large that such feedback will have to be carefully

controlled.

Two techniques are necessary for the success of these improvements: the

* ,~ use of low-level information, and the parameterization of synthesis.

Pure top-down synthesis will not produce high quality designs. Critical

path analysis and area/time tradeoffs are crucial to good designs, and are not

possible without low-level area and time data. In particular, details about vari-

ous functional units must be known (see [BottomUp]).
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It is important that the synthesis process not become the random applica-

tion of a collection of ad hoc heuristics; otherwise the process becomes hard to

control. In order to avoid this, synthesis tasks should be carefully parameter-

ized and modularized, so that alternatives may be easily evaluated and chosen.

5. A Structural Description Mechanism

The ASP project requires a structural level of description, above the

geometric level of low-level physical synthesis [CHS], but below the level of

behavioral Prolog specifications. This structural level serves a similar purpose

to the DDL level in the OCCAM system, providing a target for high-level syn-

thesis, but is at a lower level of abstraction.16

All current synthesis systems ([MacPitts-Manuall and [CMU-DPI are

prime examples) partition low-level descriptions into control and data paths.

This is natural, because data path elements (operators and operands -- compu-

tational units and registers) are highly connected, and control logic is highly

. connected, while the connections between the two paths are reduced. Also, data

path elements have a different layout regularity paradigm (arrays of units con-

nected by buses) than control (masses of combinational logic, PLA's, or ROM).

All systems also use some sort of FSM realization for control. MacPitts

specifications are FSM-based at the highest level; in the OCCAM to CMOS sys-

tem FSM's are introduced at the DDL level. If FSM's are used they must be

explicit at the structural level.

"6A structural description explicitly represents connections between hardware elements
DDL is, in this sense, behavioral. The gating logic connecting elements is implicit.

. ... , ., % .," -: :,. .V,.:; . . .. "
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The low-level part of ASP will generate layouts. It will manage geometric

-I-; and circuit information and synthesis. Tying this mechanism to higher syn-

thesis levels poses three requirements. Connectivity information must be intro-

duced (see [BDLI and [Ada] for discussions of structural issues). Geometric and

electrical information should in general be hidden from higher levels. And

individual functional blocks of logic equations must be created.

5.1. The Data Path

Data path definition is similar to variable declaration in a programming

language. Instances of element types are created and given names. In addition

(unlike variable definition), the connectivity between elements must be esta-

* blished.

In detail, each element declaration has the form

element( <type>, <name>,
[< list-of-data-input-signals >],
[< list-of-data-output-signals >],
[< list-of-control-input-signals >],
[< list-of-control-output-signals >1,
<arguments>).

This is a traditional variable declaration: an instance of <type> is created and

associated with <name>. The lists of signals indicate connections to be made

with other parts of the design. For example,

V- element(alu -ripple, dpalu,

[busA, busB], [busR], [aluFnJ, [aluOverflow]).

creates a ripple-carry ALU and binds it to dpalu.

Note that this example demonstrates one way of managing types, tying

j. together type name and parameter (alu.ripple). An alternative would be to
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pass the kind of ALU as an argument, such as

element(alu, dpalu, ... , ripple).

Either form can be used, depending on the needs of the type designer.

For every control input signal mentioned in an element statement, a

declaration of the form

controlln(< signal>, <defa ult-input>, [<list-of-inputs>]).

is required. Control input signals are connected to and driven by the control

path. This declaration defines the signal's default value and all other possible

values it can have. The number of values defines the bitwidth of the signal.

For example,

controlln(aluFn, passA, [add, sub, ...D.

would appear with the ALU element definition above.

In a similar manner,

contro!Out(< signal>, [<list-of-outputs>]).

defines all the outputs of a control output signal. Such signals serve as input to

the control path.

Elements in the data path are tied together with buses via

bus(< name>).

such as

bus(busA).

This indicates that the named bus is a global signal shared among several ele-

ments.
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Widths of elements and signals can be declared using the form

dataWidth(< name>, <integer>).

Depending on the items involved, this number may be constrained to certain

values.

5.2. The Control Path

Control information is specified in finite state machine style. Associated

with each state are the control lines to be driven and conditional next state

transitions. 
17

In particular, each state has the form

state(<name>, [<list-of-outputs>), <next-state>).

The <name> is the name of the state. The list of outputs consists of pairs of

the form

output(<value>, <name>)

where the <value> is the value to be output, and <Name> designates the

signal to be driven. Both <value> and <name> must be defined in a contro-

lIn statement. The <next-state> can either be a state name or a conditional

branch of the form

branch(< test-signal >, [<list-of-cases >1)

where <test-signal> is an output control signal. Each element in the <list-

of-cases> has the form

case(<value>, <state>)

'Multi.phase clocks are not currently supported. They can be either by dividing a state into
phases for control line purposes or by defining multiple phase-conditioned states.
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where <state> is the next state if <test-signal> is equal to <value>. Both

the signal and all its values must be defined in a controlOut statement.

All the state, control, and element statements will be passed to the low-

level part of ASP for synthesis. The control path will be synthesized from the

set of state definitions. The representation used will be chosen by the control

synthesizer.18 In addition, a simulator will be constructed that will operate on

the set of statements and verify the functionality of the generated design.

5.3. Improvements

The above mechanism is a prototype. As experience with synthesis and

with large descriptions is gained, features needed to support both will be

added.' 9 Such additions fall into four categories.

The first category is enhanced control. Subroutines, supported by the Mac-

Pitts system, can be implemented. The default value in the controlln state-

ment can be extended with enabling conditions. And the mapping of values to

output signals can be more complex. In particular, bit steering and disjoint

subfields can be provided. Any additions must be made in conjuction with the

control simulator and synthesizer. 20

"the CADDY system, for example, uses a control generator that produces random logic,
PLA's, or microcode (ROM), depending on the nature of the transition table.

"DDL is in general a good source of ideas.

"There is a tension here. On the one hand, the generator needs representational freedom to
optimize control. On the other hand, the semantics of a control construct are tied to its imple-
mentation. How much detail should be visible at this level is not obvious.
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The second category is concurrency, meaning, at this level, co-operating

FSM's. One issue this raises is the passing of control between FSM's

(addressed, for example, in [SFL]). Another is the control of shared resources

(discussed in [CADDY-CHDL]) and the passing of data between FSM's (dealt

with for asynchronous FSM's in [Silc]). The functionality added here will

depend on the needs of higher-level specifications.

The third category is modularity - packages of control and data.2 Modu-

larity requirements will come from above (human needs) and below (library

needs). It is important not to pay an implementation cost for modules (as is

paid in [SBLJ), since they are not semantically significant.22

The fourth category is low-level parameterization (such as timing,23 area,

and electrical constraints). Some parameters will be passed to the library via

the element construct. Some will be of more general applicability (the CADDY

system allows certain parameters to be globally specified once). The nature and

form of these parameters will be determined by the needs of the library and

control generator.

2'ASP input is hierarchical, but not currently modular. This is in part because Prolog,
ASP's specification language, is not modular. Modularity and hierarchy are both important to
human-oriented design systems, for both detail management and design verification (FormalCon-
lan]. In general, simulation-oriented systems have complex hierarchies, verification systems have
simple hierarehies (making verification easier), and synthesis systems, from the point of view of
the human designer, have no hierarchy (the input specification is at one level).

2A macro facility is one low.cost solution.

"Possible time parameters are absolute inter-rals and delays (in nanoseconds), relative inter-
vals and delays (in clock phases or cycles), and precharging and edge triggering. See (Ella] and
(Conlan).
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5.4. The Interface to Lower-Level Synthesis

High-level synthesis in ASP concerns itself with, among other things, the

composition of functional units. The generation of those units is a primary con-

cern of lower-level synthesis. It will be done by a collection of specialized tools.

This collection is a generalization of a cell library. A generation tool may use

standard cells, parameterized cells, or module generation from logic equations.

It will accept constraints from higher levels, and answer queries about the

functional unit it is responsible for (typically area/time tradeoffs). The form

and content of these experts is currently under investigation. Packaging syn-

thesis knowledge with functional units means that local, specialized expertise

can be used in addition to the global analysis and control used by current sys-

tems. For example, an ALU tool can cause the carry chain to be synthesized

first, since that is the critical path, and failure there is more likely. Module

experts should also be able to simulate module functionality as well as generate

it.

i4
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